To use IPv6
on your router, you must, at a minimum, enable the protocol and assign IPv6
addresses to your interfaces, like this:
Router(config)# ipv6 unicast-routing
Router(config)# interface type [slot_#/]port_#
Router(config-if)# ipv6 address
ipv6_address_prefix/prefix_length [eui-64]
The ipv6
unicast-routing command globally enables IPv6 and must be the first IPv6
command executed on the router. The ipv6 address command assigns the prefix,
the length, and the use of EUI-64 to assign the interface ID. Optionally, you
can omit the eui-64 parameter and configure the entire IPv6 address. You can
use the show ipv6 interface command to verify an interface’s
configuration. Here’s an example configuration, with its verification:
Router(config)# ipv6 unicast-routing
By default,
IPv6 traffic forwarding is disabled, so using this command enables it. Also, as
you’ve probably guessed, IPv6 isn’t enabled by default on any interfaces
either, so we have to go to each interface individually and enable it. There
are a few different ways to do this, but a really easy way is to just add an
address to the interface. You use the
interface configuration command ipv6 address <ipv6prefix>/ <prefix-length > [eui-64] to get this done.
interface configuration command ipv6 address <ipv6prefix>/ <prefix-length > [eui-64] to get this done.
Router(config)# interface fastethernet0/0
Router(config-if)# ipv6 address 2001:1cc1:dddd:2::/64 eui-64
Router(config-if)# end
Router# show ipv6 interface fastethernet0/0
FastEthernet0/0 is administratively down, line protocol is
down
IPv6 is enabled, link-local address is
FE80::207:EFF:FE46:4070
[TEN]
No Virtual link-local address(es):
Global unicast address(es):
2001:1CC1:DDDD:2:207:EFF:FE46:4070, subnet is
2001:1CC1:DDDD:2::/64 [EUI/TEN]
Joined group address(es):
FF02::1
FF02::2
To set up a
static DNS resolution table on the router, use the ipv6 host command; you can
also specify a DNS server with the ip name-server command:
Router(config)# ipv6 host hostname [port_#] ipv6_address1
[ipv6_address2…]
Router(config)# ip name-server DNS_server_IPv6_address
The ip
name-server command can be used to assign both IPv4 and IPv6 DNS servers.
Routing and IPv6
As in IPv4,
routers in IPv6 find best paths to destinations based on metrics and
administrative distances; and like IPv4, IPv6 routers look for the longest
matching prefix in the IPv6 routing table to forward a packet to its
destination. The main difference is that the IPv6 router is looking at 128 bits
when making a routing decision instead of 32 bits.
RIPng
Routing
Information Protocol next generation (RIPng) is actually similar to RIP for
IPv4, with these characteristics:
- It's a distance vector
protocol.
- The hop-count limit is 15.
- Split horizon and poison
reverse are used to prevent routing loops.
- It is based on RIPv2.
- Cisco routers running 12.2(2) T
and later support RIPng.
These are
the enhancements in RIPng:
- An IPv6 packet is used to
transport the routing update.
- The ALL-RIP routers multicast
address (FF02::9) is used as the destination address in routing
advertisements
and is delivered to UDP port 521.
- Routing updates contain the
IPv6 prefix of the router and the next-hop IPv6 address.
Enabling
RIPng is a little bit different than enabling RIP for IPv4. First, you use the
ipv6 router rip tag command to enable RIPng globally:
Router(config)# ipv6 router rip tag
This takes
you into a subcommand mode, where you can change some of the global values for
RIPng, such as disabling split horizon, the administrative distance, and
timers. The tag is a locally significant identifier used to differentiate
between multiple RIP processes running on the router. Unlike RIP for IPv6,
there is no network command to include interfaces in RIPng. Instead, you must
enable RIPng on a per-interface basis with the ipv6 rip tag enable
command:
Router(config)# interface type [slot_#/]port_#
Router(config-if)# ipv6 rip tag enable
The tag
parameter associates the interface with the correct RIPng routing process. To
view the routing protocol configuration, use the show ipv6 rip command:
Router# show ipv6 rip
RIP process "RIPPROC1", port 521, multicast-group
FF02::9,
pid 187
Administrative distance is 120. Maximum paths is 16
Updates every 30 seconds, expire after 180
Holddown lasts 0 seconds, garbage collect after 120
Split horizon is on; poison reverse is off
Default routes are not generated
Periodic updates 2, trigger updates 0
Interfaces:
FastEthernet0/0
Redistribution:
None
In this
example, the tag is RIPPROC1 for the name of the RIPng routing process and
RIPng is enabled on FastEthernet0/0. To view the IPv6 routing table for RIPng,
use the show ipv6 route rip command.
The 12 in
the interface command again references the AS number that was enabled in the
configuration mode. Last to check out in our group is what OSPF looks like in
the IPv6 routing protocol.
EIGRPv6
As with
RIPng, EIGRPv6 works much the same as its IPv4 predecessor does—most of the
features that EIGRP provided before EIGRPv6 will still be available.
EIGRPv6 is
still an advanced distance-vector protocol that has some link-state features.
The neighbor discovery process using hellos still happens, and it still
provides reliable communication with reliable transport protocol that gives us
loop-free fast convergence using the Diffusing Update Algorithm (DUAL).
Hello
packets and updates are sent using multicast transmission, and as with RIPng,
EIGRPv6’s multicast address stayed almost the same.
In IPv4 it
was 224.0.0.10; in IPv6, it’s FF02::A (A = 10 in hexadecimal notation).
But obviously, there are differences between the two versions. Most notably, and just as with RIPng, the use of the network command is gone, and the network and interface to be advertised must be enabled from interface configuration mode.
But obviously, there are differences between the two versions. Most notably, and just as with RIPng, the use of the network command is gone, and the network and interface to be advertised must be enabled from interface configuration mode.
But you
still have to use the router configuration mode to enable the routing protocol
in EIGRPv6 because the routing process must be literally turned on like an
interface with the no shutdown command The configuration for EIGRPv6 is
going to look like this:
Router1(config)#ipv6 router eigrp 12
The 12 in
this case is still the autonomous system (AS) number. The prompt changes to
(config-rtr),
and from here you must perform a no shutdown:
(config-rtr),
and from here you must perform a no shutdown:
Router1(config-rtr)#no shutdown
Other
options also can be configured in this mode, like redistribution. So now, let's
go to the interface and enable IPv6:
Router1(config-if)#ipv6 eigrp 12
The 12 in
the interface command again references the AS number that was enabled in the configuration
mode. Last to check out in our group is what OSPF looks like in the IPv6
routing protocol.
OSPFv3
The new
version of OSPF continues the trend of the routing protocols having many
similarities with their IPv4 versions. The foundation of OSPF remains the
same—it is still a link-state routing protocol that divides an entire
internetworks or autonomous system into areas, making a hierarchy. In OSPF
version 2, the router ID (RID) is determined by the highest IP addresses
assigned to the router (or you could assign it).
In version
3, you assign the RID, area ID, and link-state ID, which are all still 32-bit
values but are not found using the IP address anymore because an IPv6 address
is 128 bits. Changes regarding how these values are assigned, along with the
removal of the IP address information from OSPF packet headers, makes the new
version of OSPF capable of being routed over almost any Network layer protocol!
Adjacencies
and next-hop attributes now use link-local addresses, and OSPFv3 still uses multicast
traffic to send its updates and acknowledgments, with the addresses
FF02::5 for OSPF routers and FF02::6 for OSPF-designated
routers. These new addresses are the replacements for 224.0.0.5 and
224.0.0.6, respectively.
Other, less
flexible IPv4 protocols don’t give us the ability that OSPFv2 does to assign
specific networks and interfaces into the OSPF process—however, this is
something that is still configured under the router configuration process. And
with OSPFv3, just as with the other IPv6 routing protocols we have talked
about, the interfaces and therefore the networks attached to them are
configured directly on the interface in interface configuration mode.
The
configuration of OSPFv3 is going to look like this:
Router1(config)#ipv6 router osfp 10
Router1(config-rtr)#router-id 1.1.1.1
The 12 in
the interface command again references the AS number that was enabled in the
configuration mode. Last to check out in our group is what OSPF looks like in
the IPv6 routing protocol.
You get to
perform some configurations from router configuration mode like summarization
and redistribution, but we don’t even need to configure OSPFv3 from this prompt
if we configure OSPFv3 from the interface.
When the
interface configuration is completed, the router configuration process is added
automatically and the interface configuration looks like this:
Router1(config-if)#ipv6 ospf 10 area 0.0.0.0
So, if we
just go to each interface and assign a process ID and area—poof, we are done.
0 comments:
Post a Comment